Recurrence Relations for Strongly q-Log-Convex Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Recurrence Relations for Graph Polynomials

A sequence of graphs Gn is iteratively constructible if it can be built from an initial labeled graph by means of a repeated fixed succession of elementary operations involving addition of vertices and edges, deletion of edges, and relabelings. Let Gn be a iteratively constructible sequence of graphs. In a recent paper, [27], M. Noy and A. Ribò have proven linear recurrences with polynomial coe...

متن کامل

Recurrence Relations for the Linear Transformation Preserving the Strong $q$-Log-Convexity

Let [T (n, k)]n,k>0 be a triangle of positive numbers satisfying the three-term recurrence relation T (n, k) = (a1n + a2k + a3)T (n− 1, k) + (b1n + b2k + b3)T (n− 1, k − 1). In this paper, we give a new sufficient condition for linear transformations

متن کامل

Motzkin Paths, Motzkin Polynomials and Recurrence Relations

We consider the Motzkin paths which are simple combinatorial objects appearing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polynomials)...

متن کامل

Recurrence Relations for Orthogonal Polynomials on Triangular Domains

Abstract: In Farouki et al, 2003, Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1} are constructed, where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires many operations and is not very practical from an algorithmic point of view. Hence, there is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 2011

ISSN: 0008-4395,1496-4287

DOI: 10.4153/cmb-2011-008-5