Recurrence Relations for Strongly q-Log-Convex Polynomials
نویسندگان
چکیده
منابع مشابه
Linear Recurrence Relations for Graph Polynomials
A sequence of graphs Gn is iteratively constructible if it can be built from an initial labeled graph by means of a repeated fixed succession of elementary operations involving addition of vertices and edges, deletion of edges, and relabelings. Let Gn be a iteratively constructible sequence of graphs. In a recent paper, [27], M. Noy and A. Ribò have proven linear recurrences with polynomial coe...
متن کاملRecurrence Relations for the Linear Transformation Preserving the Strong $q$-Log-Convexity
Let [T (n, k)]n,k>0 be a triangle of positive numbers satisfying the three-term recurrence relation T (n, k) = (a1n + a2k + a3)T (n− 1, k) + (b1n + b2k + b3)T (n− 1, k − 1). In this paper, we give a new sufficient condition for linear transformations
متن کاملMotzkin Paths, Motzkin Polynomials and Recurrence Relations
We consider the Motzkin paths which are simple combinatorial objects appearing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polynomials)...
متن کاملRecurrence Relations for Orthogonal Polynomials on Triangular Domains
Abstract: In Farouki et al, 2003, Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1} are constructed, where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires many operations and is not very practical from an algorithmic point of view. Hence, there is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 2011
ISSN: 0008-4395,1496-4287
DOI: 10.4153/cmb-2011-008-5